登录  注册

首页->机器学习

简述正则化项中的L1和L2方法。

答:[参考正则化(Normalization)是一种抑制模型复杂度的常用方法。L1正则化和L2正则化可以看作损失函数的惩罚项。L1正则化是指权值向量w中各个元素的绝对值之和。L2正则化是指权值向量w中各个元素的平方和然后再求平方根(可以看到Ridge 回归的L2 正则化项有平方符号)。L1正则化可以产生稀疏权值矩阵,即产生一个稀疏模型,可以用于特征选择;L2正则化可以防止模型过拟合;一定程度上,L1正则化也可以防止过拟合。]
继续答题:下一题
微考学堂微考学社

更多机器学习试题