为什么呢? 曾经有座山,山上有座庙,只有一条路可以从山上走到山下。每周一早上8点,有一个聪明的小和尚去山下化缘,周二早上8点从山脚回山上的庙里。注意:小和尚的上下山的速度是任意的,但是在每个往返中,他总是能在周一和周二的同一钟点到达山路上的同一点。例如,有一次他发现星期一的9点和星期二的9点他都到了山路靠山脚的地方。 请问:这是为什么?
答:分析:如果是一天早上8点,有“两个”和尚分别从山上的庙和山脚同时出发,并且只有一条路可走,你想他们是不是一定会相遇。换一种说法,就是小和尚在同一钟点到达山路上的同一地点。回到问题,星期一和星期二都是8点出发,又是相向的走同一条路,如果能跨越时间思维的局限,星期一和星期二都的8点出发看成是小和尚有分身之术同一天的8点分别从山上的庙和山脚出发“今天的小和尚必然和昨天的自己”相遇就不难理解了。这样,就能证明小和尚能在同一钟点达到同一地点了。
继续答题:下一题


更多逻辑思维训练500题试题
- 1一句问路的话 一个人站在岔道口,分别通向A国和B国,这两个国家的人非常奇怪,A国的人总是说实话,B国的人总是说谎话。路口站着一个A国人和一个B国人:甲和乙,但是不知道他们真正的身份,现在那个人要去B国,但不知道应该走哪条路,需要问这两个人。只许问一句。他是怎么判断该走那条路的? 中级题:
- 2卖苹果。 一个商人赶一辆马车走50公里的路程去县城卖50箱苹果,一个箱子里有30个苹果。马车一次可以拉10箱苹果。但商人进城时喜欢带上他的儿子。在进城的路上他的儿子每走一公里由于口渴都要吃掉一个苹果。那么商人走到县诚可以卖出多少个苹果?
- 3旋转梯形。 有一规则的梯形如下图所示,先让它向左转,然后顺时针旋转三圈,再向后转,在逆时针旋转三圈,此时它的图形方向是怎样的?(用立体结合平面的思维考虑) 上 右 下
- 4打碎了多少个陶瓷瓶 一个陶瓷公司要给某地送2000个陶瓷花瓶,于是就找一个运输公司运陶瓷花瓶。运输协议中是这样规定的: (1)每个花瓶的运费是1元; (2)如果打碎1个,不但不给运费,还要赔偿5元。 最后,运输公司共得运费1760元。那么,这个运输公司在运送的过程中打碎了多少个陶瓷花瓶?
- 5做题。 老师给全班60个学生布置了两道作业题,其中有40个人做对了第一道题,有31个人做对了第二道题,有4个人两道题都做错了。那么,你能算出来两道题都做对的人数吗?
- 6夜明珠在哪里? 一个人的夜明珠丢了,于是他开始四处寻找。有一天,他来到了山上,看到有三个小屋,分别为1号、2号、3号。从这三个小屋里分别走出来一个女子,1号屋的女子说:“夜明珠不在此屋里。”2号屋的女子说:“夜明珠在1号屋内。”3号屋的女子说:“夜明珠不在此屋里。”这三个女子,其中只有一个人说了真话,那么,谁说了真话?夜明珠到底在哪个屋里面?